Фабрика данных в АО «Народный банк Казахстана» («Халык Банк»)
- Заказчик
- Halyk Bank
- ИТ-поставщик
- DIS Group
- Год завершения проекта
- 2021
- Сроки выполнения проекта
- Январь, 2021 - Ноябрь, 2021
- Масштаб проекта
- 184560 человеко-часов
- Цели
-
1. Стратегическая цель – увеличение комиссионного дохода Банка за счет персонализации предложений и стимулирования транзакционной активности.
2. Создание единого пространства и инструментов аналитики и ИИ в рамках концепции Data Governance для всего Банка.
3. Создание гибкой и масштабируемой платформы данных для запуска и тестирования бизнес-гипотез относительно клиентов Банка.
4. Широкое внедрение ИИ-инструментов с целью улучшения клиентского опыта: реализация систем антифрода, AML, интеллектуального контакт-центра и других инициатив.
Уникальность проекта
Проект, реализованный на базе технологии Big Data, продемонстрировал четкие финансовые результаты, которые обеспечили доверие к ней со стороны бизнеса и позволили увеличить процентные доходы Банка уже через три месяца после запуска первых коммуникаций с клиентами на основе фабрики данных.
В ходе проекта создана новая платформа данных, выстроены заново процессы руководства данными (Data Governance) и обеспечения качества данных (Data Quality), назначены роли, охвачены все ключевые корпоративные источники и домены данных Банка. Полностью изменен подход к сбору корпоративных данных, проработаны бизнес-гипотезы, построены модели искусственного интеллекта (ИИ) для увеличения транзакционной активности, улучшения и персонализации клиентского опыта, снижения оттока клиентов. Достигнуты полная вовлеченность бизнеса в задачи ИИ и использование инструментов Big Data на протяжении всего цикла взаимодействия Банка с клиентом. Участники проекта смогли достичь синергии технологических и бизнес-задач.
- Проект решает задачи импортозамещения
- Нет
- Использованное ПО
-
Основу фабрики данных составляет гетерогенное хранилище данных на базе решения Arenadata Hadoop и СУБД Oracle. Оно интегрировано с 14 внутренними источниками данных и 20 внешними с помощью решений Informatica Data Engineering Integration (DEI), Power Center и Apache Kafka. Проверка качества данных осуществляется с использованием Informatica Data Quality. Все реализуемые в хранилище расчетные показатели описаны в системе Informatica Axon, которая посредством инструментария Informatica Enterprise Data Catalog (EDC) определяет происхождение данных (data lineage) из 14 внутренних источников и их метаданные.
Вокруг хранилища образован слой, позволяющий с помощью имеющихся в EDC модулей отслеживания измененных данных обеспечивать в режиме реального времени загрузку данных о всех карточных транзакциях и начислениях бонусов в системе лояльности. Для обработки таких данных применяются инструменты Clickhouse, Scylla DB и Elastic Search. Для развертывания систем поддержки принятия решений создано частное облако, в котором используются технологии HashiCorp, Vault и Open Stack, над которыми располагаются системы оркестрации контейнеров Kubernetes и NOMAD.
Управление контрактной политикой и коммуникациями с клиентами осуществляется с применением решений Unica, Journey и Optimize компании HCL. Принятие решений в реальном времени производится с использованием IBM Streams. Доступ бизнес-пользователей к данным из хранилища предоставляется с помощью Qlick BI. Для принятия решений производится также загрузка данных в реальном времени из BPM-системы Camunda, отслеживание измененных данных в ней обеспечивается посредством инструментария с открытым кодом Debezium.
- Сложность реализации
-
Проект «Фабрика данных» стал самым сложным инфраструктурным проектом Банка за последние 10 лет. Были полностью пересмотрены методы интеграции с корпоративными источниками данных, выстроены процессы Data Governance. Полностью обновлена инфраструктура хранилища данных (прежнее хранилище было внедрено 12 лет назад).
Пересмотрены процессы работы с клиентами по перекрестным продажам во всех бизнес-направлениях Банка – как в розничных, и так в SME. Автоматизированы лидогенерация, коммуникации с клиентами, контактная политика.
- Описание проекта
-
В ходе проекта совместно работали 12 команд общей численностью 90 сотрудников. Их усилиями построено гетерогенное хранилище, внедрены 15 компонентов сбора и обработки данных (ETL), проработаны и внедрены 3 ключевые бизнес-инициативы, подключены 4 канала коммуникации, автоматизированы процессы Data Science, разработаны модели искусственного интеллекта, автоматизирована управленческая отчетность, подключено 20 внешних источников для обогащения информации, назначены 28 дата-стюартов на 60 доменов данных.
Реализован контур принятия решений в реальном времени. Бизнес-глоссарий ведется по всем расчетным показателям нового хранилища. В фабрику данных стекаются данные из внутренних и внешних источников. На их основе принимаются решения о различных действиях. Часть решений принимается в режиме реального времени, в том числе расчет аналитического профиля клиента. Для других решений производится ежедневная выгрузка из прогнозной модели данных о коммуникациях с клиентами: перекрестных продажах, апсейлу, удержании клиентов, их ремотивации и пр. Эти данные дополняют персональные истории взаимодействия в мобильных банковских приложениях: на их основе строятся персональные всплывающие окна, персональные push-уведомления и бонусы, которые начисляются по результатам анализа поведенческих характеристик и предпочтений клиента – для этого применяются алгоритмы машинного обучения.
Основной принцип, который при этом реализуется, заключается в том, чтобы взаимодействовать с клиентами мягко, не слишком назойливо, но в то же время с взаимной выгодой для них и для Банка.
Проект охватывает не только розничный бизнес, но и корпоративный, и SME.
Благодаря проекту были автоматизированы каналы взаимодействия с клиентами – как с физическими, так и с юридическими лицами. Кроме того, в качестве еще одного мощного канала взаимодействия с клиентами стали использоваться банкоматы.
- География проекта
- Казахстан